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A model classical fluid is constructed by assuming that the direct correlation 
function e ( r - r ' )  is independent of any applied external field. Thermodynamic 
consistency requires that c ( r -  r')~> 0, and permits explicit representation of the 
model by a many-body interaction potential. In the canonical ensemble, the 
model shows a phase transition to an infinite density condensed phase, but in 
the grand canonical ensemble only an anomalous transition to zero density 
vapor is found to stably exist. 

KEY WORDS: Nonuniform fluid; density functional; many-body forces; 
phase transition. 

1. I N T R O D U C T I O N  

The study of simple classical fluids has in many ways reached maturity, 
with reliable information on states of thermal equilibrium available over a 
wide range of thermodynamic parameters. However, such an assessment 
does not apply to highly nonuniform fluids. Many approximations now 
exist, but their reliability remains a source of uncertainty. One course of 
action under these circumstances is the construction of model systems that 
can be solved exactly, to serve as references and for testing approximations. 
To be sure, models must be equipped with certain peculiarities to permit 
their ready solution. A few simple one-dimensional models have been 
solved, ~) and even a special two-dimensional one. (2~ In this paper, we shall 
consider a class of models of unrestricted dimensionality, but with a tightly 
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connected set of many-body potentials, somewhat different in spirit from 
those of one-dimensional cluster models, (3) being based instead on a 
realization of one of the approximations in current use. 

2. T H E  BASIC  M O D E L  

The problem we consider is this: Suppose that the reciprocal tem- 
perature/~ and interactions, pair, triplet, and otherwise, of a classical fluid 
in the grand ensemble are fixed. What then is the relationship between an 
applied external potential u(r) and the resulting density n(r)? We may 
imagine that full knowledge of the uniform system at all bulk densities 
is available, e.g. pair distribution n2(r, r'), triplet distribution 
n3(r, r', r"),..., and if their changes under nonuniformity were known, the 
system could readily be solved. Indeed, many approximations amount to 
pinpointing some 2-particle distribution which is to be regarded as not 
changing at all when the system is made nonuniform. A question we may 
ask is whether any such approximation is consistent with a model fluid 
with some set of interactions. 

One approximation that has been used for systems with a known 
predominant density, e.g., a fluid bounded by a substrate, is that the "radial 
distribution" 

g(rl,  r2)= n2(rl, r2)/n(rl) n(r2) (2.1) 

maintains its reference bulk value under an applied external field. (4) This 
can be used as closure for the first of the YBG hierarchy 

Vn(r)/n(r)+ V~u(r)+ f Vfl(~(r-r') g(r,r')n(r')d3r'=O (2.2) 

when only a pair interaction ~b(r-r ' )  is present. It can also be used as 
closure for the interaction-independent linear response relation C5~ 

Vn(r)/n(r)+ V~u(r)+ f Vl3u(r') g(r,r')n(r')d3r'=O (2.3) 

(or with h = g -  1 replacing g--these are equivalent) for any--even many- 
body--interaction that is translation invariant. However, invariance of g in 
(2.1) is valid only for an ideal gas. We simply apply the operation 
6/~- ~u(r") to (2.1), leading after a small amount of distribution algebra to 

n2(1, 2)n2(2,3) n2(1,2)n2(1, 3) 
n3(1, 2, 3 ) -  ~ n2(1, 2)n(3) (2.4) 

n(2) n(1) 
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in obvious notation. It is easy to see that the right-hand side of (2.4) is not 
symmetric in particles 1, 2, 3 unless g(1, 2) = const, and so the invariance of 
g applies to no nontrivial fluid. 

The linear response relation (2.3) can also be written as 

Vn(r)/n(r) + Vflu(r) = f c2(r, r') Vn(r') d3r ' (2.5) 

where c2(r, r') is the direct correlation function of Ornstein and Zernike. c2, 
like g, does double duty, expressing both structural and linear response 
properties, which is why its restriction has such strong implications. The 
approximation, very much in the Ornstein-Zernike spirit, that c 2 is 
unchanged from its reference bulk value when nonuniformity is imposed is 
in a way the prototype of a number of free energy density functional 
approximations that have been made. (6~ Consistency is now no problem, 
since iterated application of 6/6n(r) yields the sequence 

c,(1 ..... s ) = 0 ,  s > 2  (2.6) 

for the higher direct correlation functions, which certainly maintains sym- 
metry. 

In fact, consistency implies integrability in the sense that a free energy 
can be constructed to describe the fluid. We start by writing 

c2(r, r') = c ( r -  r') (2.7) 

c being our basic model function, then observe that 

~5 6(r - r') 
(~n(r') f l [ # - u ( r ) ] -  n ( r ~  c ( r -  r') (2.8) 

integrates to the profile equation 

fl[# - u(r)] = In n(r) - f c(r - r') n(r') d3r ' (2.9) 

which of course implies (2.5). Here # is the (momentum-reduced) chemical 
potential. Following this, 

6flF~/6n(r) = fl[# - u(r)] 

integrates to 

1 
flF B= f [n(r) ln n(r)-n(r)  ] d 3 r - s  f f n(r) c (r -r ' )  n(r') d3r d3r ' 

(2.10) 

(2.11) 
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Here F B is the bulk or internal Helmholtz free energy, in which the external 
field energy has been subtracted out, 

= F -  f n(r) u(r) d3r (2.12) F B 

From (2.11), all of thermodynamics can now be constructed. 

3. P H A S E  T R A N S I T I O N S  

Of the other free energies obtainable from (2.11), the grand canonical 
potential 

s = F ~ - f n(r ) [#  - u(r)] d3r (3.1) 

is particularly useful. Inserting (2.11), we have 

fig2= - f n(r ) d3r + ~ f f  n(r ) c(r - r') n(r') d3r d3r ' (3.2) 

clearly the prototype of a power series expansion in n(r). Some 
appreciation for the pecularities of the model that has now been designed 
can be gleaned from its restriction to uniform density n(r) = n. Since we can 
expect s - P V  for a uniform system, (3.2) reduces to - f l P V =  - n V +  
(1/2) 112Vco, where Co is the total integral or zeroth moment of c, and hence 
to the equation of state 

tiP = n - �89 n2 (3.3) 

When Co>0, the grand canonical manifestation (3.3) is odd indeed. 
The exaggerated Van der Waals loop has however been recognized (7~ as an 
artifact due to the divergent fluctuations in particle number at maximum P, 
so that in fact s r - P V .  By going over to the canonical ensemble obtained 
from (3.3) via 

e ~ = Z = Z ew~F'QN = Z ePOXY'-- Vu) (3.4) 

matters clarify. In terms of the activity z = e ~u, and using (2.9), then (3.4) 
becomes 

2 z N e  ~Fu=eVEn O/2)c~ where z = n e  nco (3.5) 
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giving rise to the large N-asymptotic solution (8) 

- -  f l F  N = 

1N N)  
Co T -  In '" +~ ~ , 

+~Co V +  in Co "'" , 

N 1 

- <Vo 
N ! 

V c o 

(3.6) 

For the pressure P =  -#F/OV,  we then have 

fn  -- �89 n2, n < I/co 

~ 1/(2Co) , n > 1/c o 
(3.7) 

a perfectly reasonable flat isotherm, leading to an infinite density 
condensed phase. 

We surmise that a spatial separation into these two phases will not 
occur in the grand canonical ensemble, e.g., the Helmholtz free energy 
(2.11) gives rise only to the first of (3.6). However, in conformity with the 
peculiar nature of the system, there does exist a spatial transition from the 
n = l/co transition fluid to n = 0 vapor! This anomalous state is supported 
on the n = 0 side by a nonvanishing logarithmic density gradient, so that 
the bulk pressure of zero is not relevant. To illustrate the phenomenon, 
suppose that 

~2 e--2r 
(3.8) c ( r ) = c  o 4~z r 

so that 

l ( 1 - ~ V 2 )  c ( r )=6(r )  (3.9) 

Then from (2.9) we have in the absence of external field 

Writing 

/~--~-~=1(1-)~ 2 c o  Co V2) l n n ( r ) - n ( r )  (3.1o) 

1 
n ( r ) = - - e  w(r) (3.11) 

Co 

and recalling from (3.5) that e~U= 1/(coe) at the transition vapor density 
n = 1~Co, (3.10) becomes 

1 
)---~ g Z w ( r )  + e w(r) - 1 - w(r) = 0 (3.12) 
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Fig. 1. Interface potential V(w) and density profile n(x). 

If the densi ty  is s trat if ied in the x direct ion,  (3.12) has the energy 

integral  

1 
-Z w'(x)2 + V(w(x)) = 1 

V ( w ) = e W - w - ~ w  2 

(3.13) 

where the energy cons tan t  is de te rmined  by  the a sympto t i c  cond i t ion  tha t  
w = 0 when w'(x) = 0. The t ra jec tory  in w space is seen to be f rom w = - o e  
to w = 0, a t  which po in t  V'(w) = 0. To es t imate  the profile,  we observe  tha t  
near  w = 0, 

1 1 
2 -7  w'(x)2 + 2  w(x)3 = 0 (3.14) 

so that ,  e.g., 

24 1 
w(x) = 22 x2 (3.15) 

yie lding the c la imed t rans i t ion  from n = 0 to n = 1/%, with 1/e value at  
x=(24)t/2/2. This is no t  accura te  on the tai l  at  large - w ,  where 
w'/(lw 2 + w + 1 )1/2 = )~ yields ins tead  

w(x) + 1 = s inh (2x /x f2  + K) (3.16) 



Some Solvable Models of Nonuniform Classical Fluids 927 

4. THE  M A N Y - B O D Y  P O T E N T I A L S  

The model (2.9) is of course familiar. In the form 

n(r) = e ~E~ u(r)]exp[fc(r-r')n(r')d3r' 1 (4.1) 

it is simply the nonlinear Debye-Hiickel equation, (9) with pair interaction 
-/3~b replaced by c. On the other hand, if the external potential is taken as 
~b(r), that due to a particle sitting at the origin, it reads, since then 
n(r) = ng(r), 

- fl/~ = - l n  n - I n  g(r) + n[c(r - r') h(r') d3r'+ nCc(r - r') d 3 f  (4.2) #~(r) 
J d 

implying both (let r --* oo ) 

ln(n/z) = 1 - (?tiP~On (43) 

and 

flqt(r) + In g(r) = g(r) - t - c(r) (4_4) 

The second is the well-known HNC approximation, and the first an 
equation of state consistent with (3.3). 

But is (2.9) a model of anything? Is there some set of internal many- 
body interactions that gives rise to (3.2)? It is not just a matter of having 
the right number of functions available for the purpose--there are enough. 
Rather, the question is whether, e.g., the grand partition function ~ =  e - ~  
results from a nonnegative probability kernel, or more explicitly whether 
we can write 

1 
Z = ~ . f ' " f  [-Ie(ri) exp[-flgs(rl,...,rs)]d3rl'"d3rs (4_5) 

1 

where e ( r ) = e  p[~-"(r)?, for a suitable set Vs. To this end, we need only 
eliminate n(r) from (3.2) and (4.1), written as 

2=exp[fn(r)d3r-�89 '1 (4_6) 

where 

n(r) = e(r) exp f c(r - r') n(r') d3r ' (4.7) 

and compare with (4.5). A graphical analysis is by far the easiest way to 
proceed. 
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To start with, consider (4.7), written in graphical 
element integrated, open element unintegrated) as shown 

1 - + - . .  t =27., s 
g 

or on integrating, 

n(r) = ~ (labeled r-rooted trees with nodes e 

and bonds c)/graph symmetry 

form (filled-in 

(4.8) 

Rather than inserting this directly into (4.6), it is simpler to first note that 
since 

6f2 
n(r) = -fie(r) 6 e(r) (4.9) 

then (4.8) implies at once 

- fis"2 = ~ (labeled unrooted trees)/graph symmetry. (4.10) 

Now we can exponentiate (4.10) to obtain 

= y, (labeled unrooted tree complexes )/graph symmetry (4.11) 

Written out, then 

1 1 
S = I + ~ { . . + _ _ } + ~ . { . ' . + 3 + 3  

1 
�9 4~{i + 6 I  "+31 I + 1 2 [ - -  

+ 1 2 [ - - - ] + 4 [ ~ } + . . .  

-.} 

(4.12) 

Hence, comparing with (4.5), 

e flv2(1,2) ~_ 1 + c ( 1 ,  2) 

e /~v30,2,3) = 1 + ~ c(i, j)  + ~, c(i, j)  c(j, k) 

e - f l V 4 ( 1 ' 2 ' 3 ' 4 )  = 1 + ~ c(i, j)  + ~ c(i, j) c(k, l) + ~ c(i, j)  c(j, k) 

+ ~ c(i, j)  c(j, k) c(k, l) + ~, c(i, l) c(j, l) c(k, l) 

"''7 

where only distinct terms are included in each sum. 

(4.13) 
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5. R E A L I Z A B I L I T Y  C O N D I T I O N S  

The restrictions on the available model function c(1, 2) are now 
readily found. Since exp[ - f lV2(1 ,  2)] ~>0, then according to (4.13), 

c(1, 2)~> - 1  (5.1) 

Moving to the next step, 

e - f lV3 (1"2 '3 )  ~-- e - f l V 2 ( l ' 2 ) e  - • v 2 ( l ' 3 ) e  f lv2 (2 '3 )  

c(1, 2) c(2, 3) c(3, 1) ] 
• 1+  1 + c(1, 2) ~ + c(2, 3) 1T-~(Z-1) J �9 (5.2) 

Thus, if geometric relations between 1, 2, and 3 are ignored so that c(1, 2), 
c(2, 3), c(3, 1) are independent, we require c(1, 2)/[1 + c(1, 2)] ~> -1 ,  or 

c(1, 2) >1 -�89 (5.3) 

(5.1) and (5.3) suggest decreasing negativity as s in V, increases. To 
strengthen this suggestion, consider the sth of (4.13), in which at most s -  1 
links occur. The product c(2, s) c(3, s ) . . . c ( s -  1, s) occurs only in the term 
[1 +c(1,  2 )+c(1 ,  3 ) +  "-. + c(1, s)] c(2, s) c(3, s ) ' . . c ( s -  1, s). Hence, if as 
in (3.8) the c(i, j) can be arbitrarily large, the limit 

e - fiBs 

lira - l + c(1, 2 ) +  ... +c(1,  s) (5.4) 
~/~,,)~ ~ c(2, s ) " ' c ( s -  1, s) 

c ( s -  1,s) ~ o3 

together with the same independence assumption as above, shows that 
c(12) ~> - 1 / ( s - 1 ) ,  or going to arbitrarily large s, that 

c(1, 2)>/0 (5.5) 

The condition (5.5) is also sufficient for the sequence of many-body 
potentials V s to exist, since the right-hand side of (4.13) is now guaranteed 
to be nonnegative. It is of course not sufficient for the convergence of the 
grand ensemble thermodynamic functions, but this presumably has a direct 
physical basis: the convexity of the free energy, and hence the stability of 
the system, is equivalent to the restriction 

3(r--  r') 

n(r) 
c ( r -  r') is positive semidefinite (5.6) 

which must thereby be enforced. Its failure in the uniform case for n > l/co 
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was precisely the reason for the analysis (3.4)-(3.7). However, if (5.5) 
holds, { c ( r - r ' ) }  has Co as its largest eigenvalue, so that (5.6) is necessarily 
valid when n(r) >~ 1~Co pointwise. 

6. CONCLUSION 

We have constructed a set of solvable classical fluids with special 
many-body interactions, but arbitrary external field. The "net interaction," 
according to (5.5), is restricted to be attractive, permitting the occurrence 
of a phase transition in a canonical ensemble, but producing an infinite 
density condensed phase. Reduction to a canonical ensemble for the non- 
uniform fluid seems notably nontrivial. Nonetheless, in addition to the 
obvious possibility of using such systems out of their domain of 
microscopic validity, they may serve as useful references to which repulsive 
potentials can be applied, e.g., perturbatively. It is also true that extension 
of (3.2) to higher-order polynomials, to generalized rational fractions, and 
for that matter to the use of dimensionless pair functions other than c(1, 2), 
are strongly suggested, but these must remain tasks for the future. 
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